Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Food Sci ; 89(4): 2025-2039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38465674

RESUMO

Microbial contamination of dehydrated onion products is a challenge to the industry. The study focused on opting for a suitable drying condition for minced onion and exploring the decontamination efficacy of pulsed light (PL) treatment conditions for the dehydrated product. The minced onions were hot air dried at 55-75°C for 280 min. The drying condition selected was 195 min at 75°C with a final water activity of 0.5 and moisture content of 7% (wet basis [w.b.]). The weight losses, browning indexes (BI), shrinkage volumes (%), and thiosulfinate content were considered. The dehydrated product was exposed to PL treatment corresponding to an effective fluence range of 0.007-0.731 J/cm2. A fluence of 0.444 J/cm2 (1.8 kV for 150 s) achieved 5.00, 3.14, 2.96, and 2.98 log reduction in total plate count, yeast and mold count, Bacillus cereus 10876, and Escherichia coli ATCC 43888, respectively. The PL-treated sample (0.444 J/cm2) produced a microbially safe product with no significant difference in the moisture contents (%w.b.) and water activity (aw) from the untreated dehydrated sample. Further, a 30.9% increase in the BI and a 4.25% depletion in thiosulfinate content were observed after PL treatment. An optimum drying combination (75°C for 195 min) of minced onion followed by decontamination using pulsed light treatment at 0.444 J/cm2 fluence satisfies the microbial safety and quality. PRACTICAL APPLICATION: Dehydrated minced onion can be used for dishes requiring low water content and short cooking time. It is helpful during shortages, high price fluctuations, and famines.


Assuntos
Escherichia coli O157 , Cebolas , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Descontaminação , Desidratação , Água/farmacologia , Luz
2.
Environ Sci Pollut Res Int ; 30(4): 9350-9368, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36480139

RESUMO

The mining industry has powered the human endeavor to make life more innovative, flexible, and comfortable. However, it has also led to concerns due to the increasing amount of mining and associated industrial waste. Special attention is highly desired for its proper management and safe disposal in the environment. The problem has only augmented with the increase in the mining costs because of the investments needed for ecological remediation after the mining operation. It is pertinent that the targeted technologies need to be developed to utilize mining and associated industrial waste as a secondary resource to ensure sustainable mining operations. Every perceived waste is a valuable resource that is needed to be utilized to create additional value. In this review, the case of alkaline bauxite residue (red mud)-alumina refinery waste has been discussed at length. The highlight of the proposed work is to understand the importance of alkaliphile-assisted biomining-a sustainable alternative to conventional metal recovery processes. Along with the recovery of metals, pH reduction of red mud is possible through biomining, which ultimately paves the way for its complete utilization. The unique adaptation strategies of alkaliphiles make them more suitable for biomining of red mud through bioleaching, biosorption, and bioaccumulation, which have been discussed here. Furthermore, we have focused on the potential of the indigenous microflora of red mud for metal recovery in addition to its neutralization. The study of indigenous alkaliphiles from red mud, including its isolation and propagation, is crucial for the industrial-scale application of alkaliphile-based technology and has been emphasized.


Assuntos
Óxido de Alumínio , Resíduos Industriais , Humanos , Óxido de Alumínio/química , Resíduos Industriais/análise , Metais , Mineração
3.
Chempluschem ; 86(4): 558-573, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33830661

RESUMO

In less than a decade, organic-inorganic metal halide perovskites (MHPs) have shown tremendous progress in the field of light-emitting applications. Perovskite light-emitting diodes (PeLEDs) have reached external quantum efficiencies (EQE) exceeding 20 % and they have been recognized as a potential contender of the commercial display technologies. However, perovskite thin films in PeLEDs are generally deposited via a spin-coating process, which is not favourable for large area device fabrication. Despite the great success of solution-processed PeLEDs, very few articles have been reported on vacuum processed PeLEDs and the improvements in their optoelctronic performances are also progressing slowly. On the other hand, vacuum processing techniques are mostly used in organic LED technology as they can guarantee (i) the absence of solvent during thin-film growth, (ii) process scalability over large area substrates, and (iii) precise thin-film thickness control. This thin-film growth process is suitable for application in the advancement of a large variety of display technologies. In this Review, we present an overview of current research advances in the field of perovskite thin films grown via vacuum techniques, a study of their photophysical properties, and integration in PeLEDs for the generation of different colors. We also highlight the current challenges and future prospects for the further development of vacuum processed PeLEDs.

4.
Rev. bras. farmacogn ; 27(4): 510-518, July-Aug. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-898686

RESUMO

ABSTRACT Stevia rebaudiana (Bertoni) Bertoni, Asteraceae, leaf extract has recently called the attention of food industry as a proposal for natural sweetener. The sweet flavor is attributed to the glycosides, in especial stevioside and rebaudioside A, which are the plant main chemical markers. The aim of the work reported here was to optimize the turbo-extraction of stevia leaves using water, ethanol 70% and 90% (w/w) as green solvents. A 25-2 factorial design was applied to study the linear effects of the drug size, solvent to drug ratio, temperature, time and also the turbolysis speed on the extraction of glycosides. The glycosides exhaustive extraction showed that ethanol 70% gave better results and was used for turbo-extraction. The stevioside and rebaudioside A contents were quantified by a validated method by high performance liquid chromatographic with photodiode array detector. The contents of stevioside and rebaudioside A in fluid extract increased with the drug size, but decreased at high shearing speeds and solvent to drug ratio, while their yields decreased at higher temperature and were not affected by turbo speed. An increase in solvent to drug ratio reduced significantly the glycosides percent in dried extract. Optimal solution for S. rebaudiana leaves turbo-extraction was determined by desirability functions. The optimal extraction condition corresponded to drug size of 780 µm, solvent to drug ratio of 10, extraction time of 18 min; temperature of 23 ºC and turbo speed of 20,000 rpm, resulting in yields of 4.98% and 2.70%, for stevioside and rebaudioside A, respectively. These yields are comparable to the ones recently published for dynamic maceration, but with the advantage of shorter extraction times. This work demonstrates that turbolysis is promising for S. rebaudiana glycosides extraction and stimulate new research on the purification of these extracts, which may become an interesting source of income for developing countries such as India and Brazil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...